organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 5-methoxy-2-nitro-4-[3-(piperidin-1-yl)propoxy]benzoate

Min Zhang, Ran-Zhe Lu, Lu-Na Han, Wen-Bin Wei and Hai-Bo Wang*

College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: wanghaibo@njut.edu.cn

Received 13 February 2009; accepted 16 February 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.068; wR factor = 0.175; data-to-parameter ratio = 14.4.

In the molecule of the title compound, $C_{17}H_{24}N_2O_6$, the dihedral angle between the four coplanar atoms of the piperidine ring and the benzene ring is 39.2 (1)°.

Related literature

For general background, see: Knesl *et al.* (2006). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_{17}H_{24}N_2O_6$ $M_r = 352.38$ Monoclinic, $P2_1/n$ a = 10.073 (2) Å b = 11.140 (2) Å c = 16.161 (3) Å $\beta = 97.23$ (3)°

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.971, T_{\max} = 0.981$ 3458 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.175$ S = 1.013262 reflections V = 1799.1 (6) Å³ Z = 4Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.20 \times 0.20 \text{ mm}$

3262 independent reflections 1950 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ 3 standard reflections every 200 reflections intensity decay: 1%

226 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.25~e~\AA^{-3}\\ &\Delta\rho_{min}=-0.29~e~\AA^{-3} \end{split}$$

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *PLATON* (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2910).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). *XCAD4*. University of Marburg, Germany. Knesl, P., Roeseling, D. & Jordis, U. (2006). *Molecules*, **11**, 286–297.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o558 [doi:10.1107/S1600536809005418]

Methyl 5-methoxy-2-nitro-4-[3-(piperidin-1-yl)propoxy]benzoate

M. Zhang, R.-Z. Lu, L.-N. Han, W.-B. Wei and H.-B. Wang

Comment

As part of our ongoing studies on quinazoline derivatives (Knesl *et al.*, 2006), we report herein the crystal structure of the title compound, (I).

In the molecule of the title compound (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar.

Experimental

A solution of methyl 4-(3-chloropropoxy)-5-methoxy-2-nitrobenzoate (0.013 mol), potassium carbonate (0.052mol), sodium iodide (0.026mol) in acetonitrile (33 mL) was stirred for 5-10 min at room temperature. Piperidine (0.040mol) was added and this mixture heated to reflux for 3 h. Reaction progress was monitored by TLC. Solid material was removed by filtration and washed with acetone. The combined filtrates were evaporated and the dark product obtained dissolved in dichloromethane (30 ml) and extracted with water (4×10 ml). The organic phase was dried (Na₂SO₄), decolorized (charcoal), filtered and evaporated to afford the product (yield; 71.2%) as an amber oil. Yellow blocks of (I) were obtained by slow evaporation of an methanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms.

Methyl 5-methoxy-2-nitro-4-[3-(piperidin-1-yl)propoxy]benzoate

Crystal data	
$C_{17}H_{24}N_2O_6$	$F_{000} = 752$
$M_r = 352.38$	$D_{\rm x} = 1.301 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation

Hall symbol: -P 2yn
<i>a</i> = 10.073 (2) Å
<i>b</i> = 11.140 (2) Å
c = 16.161 (3) Å
$\beta = 97.23 \ (3)^{\circ}$
V = 1799.1 (6) Å ³
Z = 4

Ľ

Data collection	
Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.042$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 293 K	$h = 0 \rightarrow 12$
$\omega/2\theta$ scans	$k = 0 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	<i>l</i> = −19→19
$T_{\min} = 0.971, \ T_{\max} = 0.981$	3 standard reflections
3458 measured reflections	every 200 reflections
3262 independent reflections	intensity decay: 1%
1950 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H-atom parameters constrained
$wR(F^2) = 0.175$	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 2.6P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
3262 reflections	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
226 parameters	$\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $\lambda = 0.71073 \text{ Å}$

 $0.30 \times 0.20 \times 0.20 \text{ mm}$

 $\theta = 10 - 13^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KBlock, yellow

Cell parameters from 25 reflections

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	z	$U_{\rm iso}*/U_{\rm eq}$
01	1.0523 (2)	0.3714 (2)	0.40317 (15)	0.0487 (7)
02	1.0082 (3)	0.1757 (2)	0.38640 (16)	0.0563 (7)
03	0.7178 (3)	0.5462 (3)	0.32890 (18)	0.0746 (10)
04	0.7681 (3)	0.3835 (3)	0.39767 (17)	0.0627 (8)
05	0.8037 (2)	0.4291 (2)	0.03763 (13)	0.0404 (6)
O6	0.9697 (2)	0.2550 (2)	0.05972 (14)	0.0408 (6)
N1	0.7693 (3)	0.4455 (3)	0.33404 (18)	0.0445 (8)
N2	0.6436 (2)	0.7187 (2)	-0.17424 (16)	0.0314 (6)
C1	1.1303 (4)	0.3499 (4)	0.4829 (2)	0.0633 (12)
H1A	1.1646	0.4247	0.5061	0.095*
H1B	1.2035	0.2973	0.4756	0.095*
H1C	1.0748	0.3134	0.5199	0.095*
C2	0.9964 (3)	0.2764 (3)	0.3627 (2)	0.0395 (8)
C3	0.9287 (3)	0.3122 (3)	0.27838 (19)	0.0325 (7)
C4	0.9752 (3)	0.2621 (3)	0.20979 (19)	0.0310 (7)
H4A	1.0391	0.2015	0.2174	0.037*
C5	0.9293 (3)	0.2995 (3)	0.13026 (19)	0.0303 (7)
C6	0.8349 (3)	0.3941 (3)	0.1185 (2)	0.0328 (7)
C7	0.7857 (3)	0.4424 (3)	0.18563 (19)	0.0316 (7)
H7A	0.7229	0.5039	0.1782	0.038*
C8	0.8291 (3)	0.4000 (3)	0.26530 (19)	0.0323 (7)
С9	1.0556 (4)	0.1520 (3)	0.0662 (2)	0.0520 (10)
H9A	1.0762	0.1303	0.0118	0.078*
H9B	1.0112	0.0863	0.0896	0.078*
Н9С	1.1368	0.1706	0.1016	0.078*
C10	0.7202 (3)	0.5334 (3)	0.0212 (2)	0.0368 (8)
H10A	0.7556	0.5999	0.0560	0.044*
H10B	0.6301	0.5165	0.0332	0.044*
C11	0.7190 (3)	0.5643 (3)	-0.0687 (2)	0.0380 (8)
H11A	0.6879	0.4957	-0.1027	0.046*
H11B	0.8094	0.5827	-0.0796	0.046*
C12	0.6288 (3)	0.6713 (3)	-0.0931 (2)	0.0404 (8)
H12A	0.5364	0.6474	-0.0922	0.048*
H12B	0.6488	0.7343	-0.0519	0.048*
C13	0.5908 (4)	0.6370 (3)	-0.2416 (2)	0.0462 (9)
H13A	0.4957	0.6258	-0.2401	0.055*
H13B	0.6340	0.5595	-0.2326	0.055*
C14	0.6130 (5)	0.6835 (4)	-0.3253 (2)	0.0601 (11)
H14A	0.5713	0.6294	-0.3679	0.072*
H14B	0.7083	0.6848	-0.3293	0.072*
C15	0.5571 (4)	0.8070 (4)	-0.3413 (2)	0.0618 (11)
H15A	0.4602	0.8042	-0.3471	0.074*

Γ π μ	Fractional	atomic	coordinates	and	isotropic o	r equival	ent isotropic	c displa	cement	parameters	$(Å^2$)
--	------------	--------	-------------	-----	-------------	-----------	---------------	----------	--------	------------	--------	---

supplementary materials

H15B	0.5837	0.8382	-0.3928	0.074*
C16	0.6085 (4)	0.8881 (3)	-0.2698 (2)	0.0509 (10)
H16A	0.5661	0.9661	-0.2779	0.061*
H16B	0.7041	0.8991	-0.2691	0.061*
C17	0.5809 (4)	0.8370 (3)	-0.1868 (2)	0.0431 (9)
H17A	0.6163	0.8905	-0.1421	0.052*
H17B	0.4851	0.8299	-0.1860	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0500 (15)	0.0488 (15)	0.0426 (14)	-0.0022 (12)	-0.0119 (11)	0.0005 (12)
O2	0.0646 (18)	0.0432 (16)	0.0596 (17)	0.0030 (13)	0.0019 (13)	0.0194 (13)
O3	0.077 (2)	0.079 (2)	0.068 (2)	0.0443 (18)	0.0102 (16)	-0.0039 (17)
O4	0.0541 (17)	0.083 (2)	0.0536 (17)	0.0055 (15)	0.0154 (13)	0.0086 (16)
O5	0.0454 (14)	0.0389 (13)	0.0358 (13)	0.0092 (11)	0.0006 (10)	0.0073 (11)
O6	0.0398 (13)	0.0429 (14)	0.0400 (13)	0.0103 (11)	0.0065 (10)	-0.0039 (11)
N1	0.0279 (15)	0.064 (2)	0.0408 (17)	0.0085 (15)	0.0003 (12)	-0.0051 (16)
N2	0.0313 (14)	0.0257 (14)	0.0365 (14)	0.0058 (11)	0.0010 (11)	0.0049 (12)
C1	0.054 (3)	0.085 (3)	0.046 (2)	-0.005 (2)	-0.0129 (18)	0.001 (2)
C2	0.0359 (19)	0.042 (2)	0.0406 (19)	0.0052 (16)	0.0040 (15)	0.0079 (17)
C3	0.0281 (17)	0.0323 (18)	0.0358 (18)	-0.0028 (14)	-0.0015 (13)	0.0014 (14)
C4	0.0257 (16)	0.0305 (17)	0.0369 (18)	0.0034 (13)	0.0052 (13)	-0.0002 (14)
C5	0.0249 (16)	0.0276 (17)	0.0385 (18)	-0.0009 (13)	0.0038 (13)	-0.0059 (14)
C6	0.0273 (17)	0.0325 (18)	0.0369 (18)	-0.0028 (13)	-0.0024 (13)	0.0020 (14)
C7	0.0249 (16)	0.0341 (18)	0.0356 (17)	0.0060 (14)	0.0025 (13)	0.0005 (14)
C8	0.0280 (17)	0.0339 (18)	0.0348 (17)	0.0045 (14)	0.0039 (13)	-0.0040 (14)
C9	0.051 (2)	0.045 (2)	0.060 (2)	0.0147 (18)	0.0097 (18)	-0.0103 (19)
C10	0.0323 (18)	0.0338 (18)	0.044 (2)	0.0052 (14)	0.0025 (14)	0.0066 (15)
C11	0.0389 (19)	0.0320 (18)	0.0419 (19)	0.0012 (15)	0.0009 (15)	0.0072 (15)
C12	0.040 (2)	0.041 (2)	0.0394 (19)	0.0064 (16)	0.0013 (15)	0.0054 (16)
C13	0.051 (2)	0.041 (2)	0.043 (2)	0.0069 (17)	-0.0037 (16)	-0.0023 (17)
C14	0.077 (3)	0.058 (3)	0.043 (2)	0.007 (2)	-0.0016 (19)	-0.004 (2)
C15	0.070 (3)	0.071 (3)	0.043 (2)	0.011 (2)	-0.0005 (19)	0.013 (2)
C16	0.055 (2)	0.045 (2)	0.054 (2)	0.0093 (18)	0.0088 (18)	0.0187 (19)
C17	0.045 (2)	0.0331 (19)	0.051 (2)	0.0104 (16)	0.0081 (16)	0.0028 (17)

Geometric parameters (Å, °)

O1—C2	1.332 (4)	С9—Н9А	0.9600
O1—C1	1.442 (4)	С9—Н9В	0.9600
O2—C2	1.187 (4)	С9—Н9С	0.9600
O3—N1	1.235 (4)	C10-C11	1.492 (4)
O4—N1	1.240 (4)	C10—H10A	0.9700
O5—C6	1.362 (4)	C10—H10B	0.9700
O5—C10	1.439 (4)	C11—C12	1.521 (4)
O6—C5	1.352 (4)	C11—H11A	0.9700
O6—C9	1.432 (4)	C11—H11B	0.9700
N1—C8	1.422 (4)	C12—H12A	0.9700

N2—C12	1.439 (4)	C12—H12B	0.9700
N2—C17	1.464 (4)	C13—C14	1.492 (5)
N2—C13	1.466 (4)	C13—H13A	0.9700
C1—H1A	0.9600	С13—Н13В	0.9700
C1—H1B	0.9600	C14—C15	1.498 (6)
C1—H1C	0.9600	C14—H14A	0.9700
C2—C3	1.499 (4)	C14—H14B	0.9700
C3—C4	1.375 (4)	C15—C16	1.506 (6)
C3—C8	1.398 (4)	C15—H15A	0.9700
C4—C5	1.375 (4)	C15—H15B	0.9700
C4—H4A	0.9300	C16—C17	1.514 (5)
C5—C6	1.416 (4)	C16—H16A	0.9700
C6—C7	1.360 (4)	C16—H16B	0.9700
С7—С8	1.389 (4)	C17—H17A	0.9700
C7—H7A	0.9300	C17—H17B	0.9700
C2—O1—C1	117.1 (3)	O5-C10-H10B	110.2
C6—O5—C10	117.9 (2)	C11—C10—H10B	110.2
C5—O6—C9	118.3 (3)	H10A—C10—H10B	108.5
O3—N1—O4	120.9 (3)	C10-C11-C12	111.3 (3)
O3—N1—C8	119.1 (3)	C10-C11-H11A	109.4
O4—N1—C8	119.9 (3)	C12—C11—H11A	109.4
C12—N2—C17	111.4 (3)	C10-C11-H11B	109.4
C12—N2—C13	112.3 (3)	C12—C11—H11B	109.4
C17—N2—C13	110.2 (3)	H11A—C11—H11B	108.0
01—C1—H1A	109.5	N2—C12—C11	113.3 (3)
01—C1—H1B	109.5	N2—C12—H12A	108.9
H1A—C1—H1B	109.5	C11—C12—H12A	108.9
01—C1—H1C	109.5	N2—C12—H12B	108.9
H1A—C1—H1C	109.5	C11—C12—H12B	108.9
H1B—C1—H1C	109.5	H12A—C12—H12B	107.7
O2—C2—O1	125.0 (3)	N2—C13—C14	112.1 (3)
O2—C2—C3	124.1 (3)	N2—C13—H13A	109.2
O1—C2—C3	110.5 (3)	C14—C13—H13A	109.2
C4—C3—C8	118.2 (3)	N2—C13—H13B	109.2
C4—C3—C2	117.5 (3)	C14—C13—H13B	109.2
C8—C3—C2	124.0 (3)	H13A—C13—H13B	107.9
C5—C4—C3	121.5 (3)	C13—C14—C15	112.3 (3)
С5—С4—Н4А	119.3	C13—C14—H14A	109.1
C3—C4—H4A	119.3	C15—C14—H14A	109.1
O6—C5—C4	125.2 (3)	C13—C14—H14B	109.1
O6—C5—C6	115.3 (3)	C15—C14—H14B	109.1
C4—C5—C6	119.5 (3)	H14A—C14—H14B	107.9
C7—C6—O5	126.1 (3)	C14—C15—C16	109.5 (3)
C7—C6—C5	119.6 (3)	C14—C15—H15A	109.8
O5—C6—C5	114.4 (3)	С16—С15—Н15А	109.8
C6—C7—C8	120.1 (3)	C14—C15—H15B	109.8
С6—С7—Н7А	120.0	C16—C15—H15B	109.8
С8—С7—Н7А	120.0	H15A—C15—H15B	108.2
C7—C8—C3	120.9 (3)	C15—C16—C17	111.7 (3)

supplementary materials

C7-C8-N1	119.2 (3)	C15—C16—H16A	109.3
C3—C8—N1	119.8 (3)	C17—C16—H16A	109.3
О6—С9—Н9А	109.5	C15—C16—H16B	109.3
О6—С9—Н9В	109.5	C17—C16—H16B	109.3
Н9А—С9—Н9В	109.5	H16A—C16—H16B	107.9
О6—С9—Н9С	109.5	N2-C17-C16	109.7 (3)
Н9А—С9—Н9С	109.5	N2	109.7
Н9В—С9—Н9С	109.5	C16—C17—H17A	109.7
O5-C10-C11	107.4 (3)	N2—C17—H17B	109.7
O5-C10-H10A	110.2	C16—C17—H17B	109.7
C11-C10-H10A	110.2	H17A—C17—H17B	108.2
C1—O1—C2—O2	-1.6 (5)	C4—C3—C8—C7	-5.0 (5)
C1—O1—C2—C3	-175.4 (3)	C2—C3—C8—C7	169.6 (3)
O2—C2—C3—C4	-55.8 (5)	C4—C3—C8—N1	173.9 (3)
O1—C2—C3—C4	118.1 (3)	C2—C3—C8—N1	-11.5 (5)
O2—C2—C3—C8	129.6 (4)	O3—N1—C8—C7	-25.2 (5)
O1—C2—C3—C8	-56.6 (4)	O4—N1—C8—C7	153.9 (3)
C8—C3—C4—C5	2.3 (5)	O3—N1—C8—C3	155.8 (3)
C2—C3—C4—C5	-172.7 (3)	O4—N1—C8—C3	-25.0 (5)
C9—O6—C5—C4	7.4 (4)	C6	171.1 (3)
C9—O6—C5—C6	-174.4 (3)	O5-C10-C11-C12	177.9 (3)
C3—C4—C5—O6	-180.0 (3)	C17—N2—C12—C11	-166.2 (3)
C3—C4—C5—C6	1.8 (5)	C13—N2—C12—C11	69.6 (4)
C10—O5—C6—C7	5.7 (4)	C10-C11-C12-N2	168.9 (3)
C10—O5—C6—C5	-173.2 (3)	C12-N2-C13-C14	-176.9 (3)
O6—C5—C6—C7	178.3 (3)	C17—N2—C13—C14	58.3 (4)
C4—C5—C6—C7	-3.4 (4)	N2-C13-C14-C15	-55.0 (4)
06—C5—C6—O5	-2.8 (4)	C13-C14-C15-C16	51.9 (5)
C4—C5—C6—O5	175.6 (3)	C14—C15—C16—C17	-54.0 (5)
O5—C6—C7—C8	-178.2 (3)	C12—N2—C17—C16	175.3 (3)
С5—С6—С7—С8	0.7 (5)	C13—N2—C17—C16	-59.3 (4)
C6—C7—C8—C3	3.5 (5)	C15—C16—C17—N2	58.5 (4)
C6—C7—C8—N1	-175.4 (3)		

Fig. 1